Servo Drive Commissioning Instruction

Smportant Notice:

This document is object to the following conditions and restrictions:

- This Document contains proprietary information belonging to Servo Dynamics. This information is provided for the purpose of assisting users of the servo drive in its installation.
- The text and graphics in this document are for the purpose of illustration and reference only.
- The information in this document is object to change without notice.

Table of Contents:

1 IN	ISERTING PARAMETERS	5
1.1 Dr	ive Parameter Page	5
1.1.1	14 – Drive Mode	6
1.1.2	15 – DC/1Ph/3Ph	6
1.1.3	17 – Enc Out Div	6
1.1.4	20 – Max Peak Current	6
1.1.5	21 - RMS Current Limit	7
1.1.6	24 – Max RPM	7
1.2 M	otor Parameter Page	8
1.2.1	30 - Velocity Sensor Page	8
1.2.2	31 – Motor Type	8
1.2.3	32 – Encoder Resolution	
1.2.4	33 – Num of Poles	9
1.2.5	34 – Stall Current	9
1.2.6	39 – Brushed R (ohm)	9
1.2.7	40 – Brushed Ke (V/Krpm)	10
1.2.8	41 – Tacho	10
2 TI	JNING THE SERVO SYSTEM	11
2.1 Cu	rrent Loop Tuning:	12
2.2 Se	rvomotor Phasing for Brushless Servomotors only	13
2.3 Ve	elocity Loop Tuning	14
2.3.1	Guidelines for Tuning Velocity	14
2.3.2	Tuning Velocity	15
2.4 Po	sition Loop Tuning	16
2.4.1	Tuning Position Loop	16

Table of Figures:

Figure 1 - Drive Parameters	5
Figure 2 – 500 Milliseconds	5
Figure 3 - Drive Mode	6
Figure 4 - DC/1Ph/3Ph	6
Figure 5 - Enc Out Div	6
Figure 6 - Max Peak Current	6
Figure 7 - RMS Current Limit	7
Figure 8 - Max RPM	7
Figure 9 - Motor Parameter Page	8
Figure 10 - velocity Sensor Page	8
Figure 11 - Motor Type	8
Figure 12 - Encoder Resolution	9
Figure 13 - Num of Poles	9
Figure 14 - Stall Current	9
Figure 15 - Brushed R	9
Figure 16 - Brushed Ke	.10
Figure 17 – Tacho	.10
Figure 18 - Control Diagram	.11
Figure 19 – Controllers	.12
Figure 20 - Current PI Man-0/Auto-1	.12
Figure 21 – I-Kp	.12
Figure 22 – Current Loop	.12
Figure 23 - Motor Parameter Page	.13
Figure 24 - AutoPhase	.13
Figure 25 - Drive Mode	.15
Figure 26 - Device Mode	.16
Figure 27 – Pos-Kp	.16

1 Inserting parameters

Follow each step inserting correct parameter for your application.

Note: Servo drive must be connected to the PC and "24" Volt power on.

1.1 Drive Parameter Page

Go to the Drive Parameter page under Device Manager tab:

File Communication Drive Option Help	
Device Manager Test Points Oscilloscope I	Error Log View
 Auto Ping every 10 Seconds Select Page: DriveParameters Auto update the page: Only Once 	Last Download: Last Upload: Saved Changes:
Figure 1 - Drive Parameters	

Pick "500 milliseconds" at Auto Update the Page.

Figure 2 – 500 Milliseconds

Insert correct parameters for your application:

1.1.1 14 – Drive Mode

14	Drive Mode	0	DEC	
		Figure 3 - Drive Mode		
Input Da	ta:			

- "0" for Velocity Mode
- > "1" for Current Mode
- "2" for Position Pulse and direction mode
- "3" for Position Encoder follower mode (Master/Slave mode)

1.1.2 15 – DC/1Ph/3Ph

This is for setting the emulated encoder output. The input number must be a binary number and the 2X, like 1, 2, 4, ..., 128. i.e. the primary encoder is 2000 ppr and set the driver at 4, the emulated encoder output is 500ppr.

1.1.4	20 – Max Peak Current				
20	Max Peak Current(A)	6.0	FLOAT	-	Q18
	Figure 6	3 - Max Peak Current			

Input data can be any value no bigger than the drive's rated peak current. This value corresponds to the max current command input (\pm 10V) if the servo drive is in the current mode.

Q18

1.1.5 21 – RMS Current Limit

21	RMS Curnt Lmt(A)	6.0	FLOAT	
----	------------------	-----	-------	--

Figure 7 - RMS Current Limit

Input data can be any value no bigger than the drive's rated continuous current.

1.1.6 24 - Max RPM

24 Max RPM

1000.0 FLOAT -

Figure 8 - Max RPM

Input data defines the max velocity (RPM) of the motor. This value corresponds to the maximum velocity command (\pm 10V) if the servo drive is in velocity mode. And click update changes.

1.2 Motor Parameter Page

Go to the Motor Parameter select page:

File Communication Drive Option Help	
Device Manager Test Points Oscilloscope Error	Log View
 Auto Ping every 10 Seconds Select Page: MotorParameters Auto update the page: Only Once 	Last Download: Last Upload: Saved Changes:
Figure 9 - Motor Parameter Page	

Figure 9 - Motor Parameter Page

Insert correct parameters for your application:

1.2.1 30 – Velocity Sensor Page

For all types of motors

Veloc sensor type	0	DEC	•	U16
	Figure 10 - velocity S	Sensor Page		

Input data defines the velocity feedback sensor type:

- "0" for Incremental encoder
- "1" for Tachometer
- "2" for Sensorless (Brushed motors only)

1.2.2 31 – Motor Type

For all types of motors.

Input data defines the motor type:

- > "0" for Brushless DC Motor
- "1" for Brushed Motor

1.2.3 32 – Encoder Resolution

For encoder feedback motors	
-----------------------------	--

Figure 12 - Encoder Resolution

Input data defines the quadratic incremental encoder resolution in ppr (Pre-quad). The maximum resolution is 16384.

1.2.4 33 – Num of Poles

Input data defines the number of brushless motor poles. (Not pole pairs)

1.2.5 34 – Stall Current

For all types of motors.

Figure 14 - Stall Current

Input data defines the continuous stall current of the motor. This data is necessary for the autophasing.

1.2.6 39 - Brushed R (ohm)

	Figure 15 - Bruch		
For sensorless mode only. Brushed R(ohm)	1.0	FLOAT	_ 018

Input data defines the winding resistance of the brushed motor.

1.2.7 40 - Brushed Ke (V/Krpm)

Brushed Ke(V/krpm)	0.0	FLOAT	•	Q18

Figure 16 - Brushed Ke

Input data defines the voltage constant Ke (V/kRPM) of the brushed motor. The value is only used in the sensorless mode.

1.2.8 41 - Tacho

For tachometer feedback.				
Tacho(V/krpm)	7.0	FLOAT	-	Q18

Figure 17 – Tacho

Input data defines the tachometer voltage constant (V/kRPM). It can be a positive or a negative number to determine the correct rotation.

And click "update changes" button.

2 Tuning the Servo System

Once the drive and motor parameters have been entered you are ready to begin to tune the system. Connect all wiring per installation instructions for your application requirements. Before tuning make sure the servomotor is not connected to the load. This is to prevent any possible damage due to initial tuning parameters or wiring problems. Begin tuning the drive.

Figure 18 - Control Diagram

Brushless Servomotor:

- 1. Tune the current loop by following the **Current Loop Tuning Instructions**.
- 2. Phase the servomotor by following the **Servomotor Phasing Instructions**.

The servo drive is now ready to run in **Current Mode**. For **Velocity or Position Mode** additional configuration and tuning is required. Follow specific instructions for **Velocity or Position Mode** as shown in this document.

Brushed Servomotors:

1. Tune the current loop by following the Current Loop Tuning Instructions.

The servo drive is now ready to run in **Current Mode**. For **Velocity or Position Mode** additional configuration and tuning is required. Follow specific instructions for **Velocity or Position Mode** as shown in this document.

2.1 Current Loop Tuning:

Go to Controllers Page in software as shown below:

File Communication Drive Option Help	
Device Manager Test Points Oscilloscope Error	r Log View
Auto Ping every 10 Seconds	Last Download:
Select Page. CurrentController	Last Upload:
Auto update the page: Only Once	Saved Changes:
Figure 19 – Controllers	

Insert "1" in the Value column of Current PI Man/Auto row and click "update changes" button:

	Current PI Man-0/Auto-1		0	DEC	-	U16
78			1.	1000		
		 	-	 		

Figure 20 - Current PI Man-0/Auto-1

The current loop auto-tuning process begins running when updated. The process will last for 10 seconds. The tuning results in Figure 20 will be:

If "0" is shown, it means the auto-tuning is successful; there should be a positive number in "I-Kp" row.

І-Кр 80	0.199996948	FLOAT	•	Q18
	Figure 21 – I-Kp			

If "99" is shown, it means the auto-tuning has failed:

Reduce the value of "Current Loop Bandwidth" row and repeat the auto-tuning process,

79	Current Loop BW(Hz)	1000.0	FLOAT	-	Q18

Figure 22 – Current Loop

2.2 Servomotor Phasing for Brushless Servomotors only

Note: In order to successfully auto-phase the motor, the bus voltage should be sufficient for the motor to run above 2000 RPM, also the drive should be disabled (orange light)

Go to Motor Parameters Page in software as shown below:

File Communication Drive Option Help	
Device Manager Test Points Oscilloscope Error	Log View
Auto Ping every 10 Seconds Select Page: MotorParameters Auto update the page: Doublo	Last Download: Last Upload:
Auto update the page. Only Once	Saved Changes:
Figure 23 - Motor Parameter Page	

Insert "1" in the Value column of "Autophase" row and click update:

32	Autophase		0	DEC	•	U16
		Einung 04	AutoDhees			

Figure 24 - AutoPhase

The brushless motor auto-phasing process begins running when updated. The phasing result will be:

- a. There is a number of 1^{6} shown in the row " $36^{"}$ —HALL Code. It means the auto-phasing process is successful. The number is the right hall code for this motor.
- b. There is a "0" shown in the row 36. It means the auto-phasing process is failed. The user has to manually put the hall code in row "36". The motor can be tested under the current or velocity mode to verify the code. The right code should let the motor run with the current and the velocity in the same direction (The current and velocity feedback value should have the same sign. The signals can be found in the signal monitoring page)

Click the "Update Changes" button.

Click the "Save Changes" button to save the changes into the drive's EEPROM.

2.3 Velocity Loop Tuning

2.3.1 Guidelines for Tuning Velocity

Before tuning velocity loop, according to figure below there are three close loops: Current Loop, Velocity Loop and Position Loop.

Tuning the Velocity Loop means adjusting the parameters of "Vel-Kvf", "Vel-Kp" and "Vel-Ki". Keep it in mind, the current loop is the most inner loop, and must have been completed successfully first.

By changing the above parameters, some system characteristics may be improved, but the others may be worsened. For example, increasing "Vel-Kp" improves the responsiveness, but the system may start oscillating. Before you can optimize the system, inertia of the load, the stiffness of acceleration and deceleration, overshoot and undershoot, steady state's position error effect the system responsiveness. Since some of these characteristics are conflicting with each other, you may need to determine what characteristic is critical in your application, and what can be tolerated. So trade-off may be necessary to get the best result. Knowing how to compromise these parameters is the key in tuning the velocity loop.

2.3.2 Tuning Velocity

Go to drive parameters page and set drive mode to "0" for velocity mode. (Device Manager \rightarrow Drive Parameters \rightarrow Drive Mode)

	File Communication Drive	Option Help		
	Device Manager Test Point	ts Oscilloscope Error	Log View	
	🔲 Auto Ping every 10 Sec	onds		
	Select Page: DrivePara	ameters 💌	Last Download:	
	Auto update the page: 0	nly Once 💌	Saved Changes:	
14 Drive	e Mode	0	DEC	■ U16
	Figure	25 - Drive Mode		
"0" for Veloci	ty Mode , "Update Change	s", "Save Changes"		
> Got to Device	Manager \rightarrow Velocity Cont	roller		
Fil	e Communication Drive	Option Help		
D	evice Manager Test Poin	ts Oscilloscope E	rror Log View	
	Auto Ping every 10 Se	conds	Last Download:	
	Select Page: Velocity0	Controller 🔽	Last Upload:	
	Auto update the page:	nlv Once 🔍 🔻	Saved Changes	

For high performance tuning the step velocity command must be generated outside of the servo drive, contact application support at Servo Dynamics if you have questions or concerns.

Apply a step velocity command and compare the velocity command and feedback on the oscilloscope.

- Start with small numbers in "Vel-Kvf", "Vel-Kp" and "Vel-Ki", and then increase and monitor them individually (in the oscilloscope function) to optimize the velocity loop. "Vel-Kvf" and "Vel-Kp" adjust how fast the system will respond to the command, but if they are too high, system may be unstable, so set these numbers as high as possible before the system appears oscillating. "Vel-Ki" improves the overshoot or undershoot. If some overshoot or undershoot is acceptable in your system, you may want to keep some overshoot or undershoot without scarifying the fast response of the system.
- Monitor the changes under Oscilloscope Tab, "Select Signal"

2.4 Position Loop Tuning

2.4.1 Tuning Position Loop

The position loop is the most outer loop, so it should be tuned at last. Go to Drive Parameter Page and set drive mode to "2" for position pulse and direction mode or "3" for encoder following mode, (Device Manager \rightarrow Drive Parameters \rightarrow Drive Mode)

	File Communication	Drive Option Help	p					
	Device Manager T	est Points Oscilloscop	oe Error	Log View				
	Auto Ping every 10 Seconds							
	Select Page:)riveParameters 💌		Last Dov	vnload: pad:			
	Auto update the p	age: Only Once	-	Saved C	hanges:			
14	Drive Mode	0		DEC				
	Figure 26 - Device Mode							

- "2" for Position Pulse and Direction Mode
- ➤ "3" for Encoder Following Mode

Go to "Velocity Controllers" page (Device Manager \rightarrow Velocity Controller) and apply a step command and compare the command and the position feedback.

92	Pos-Kp	0.099998474	FLOAT	•	Q18
		Figure 27 – Pos-Kp			

The Ruby drive doesn't provide the Oscilloscope for the position monitoring, a 2nd source of the position scope is necessary. You want to start with a small number in "Pos-Kp" first, and then increase the number gradually.

If the "Pos-Kp" gain is too high, system will appear unstable, and start oscillating. If that is the case, you need to lower "Pos-Kp" till the desired performance can be achieved.